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Abstract. Using a finite-potential-barrier model we have analytically solved the Luttinger 
Hamiltonian withelectricfieldtermsincluded. In this way.the mixed valence bandenvelope 
functions have been shown to be a powerful tool for the analysis of several physical pheno- 
mena. In particular. the enhancement of the so-called ‘forbidden’ Raman scattering has 
been calculated for the GaAs-Ga,.,AI,As superlattices, and verygood agreement with the 
availableexperimentaldata has been found. Calculationsandexperimentsshow that Raman 
scattering due to normally (in the absence of an electric field) ‘forbidden’ transitions can 
dominate that due to ‘allowed’ transitions in  large electric fields, 

Recently, the effect of external perturbations in the electronic states of quantum weJls 
(Qws) and superlattices (SLS) has been the subject of a large number of studies. Greater 
attention has been devoted to external magnetic [l-31 and electric [&9] fields and 
uniaxial external pressure [S, 10,11]. Experimental data had usually been obtained by 
photoluminescence [12, 131, optical absorption [14], electroreflectance [15] and by 
photocurrent spectroscopy [16], but very few result son resonant Raman scattering (RRS) 
[6]. However, in this work we are interested in the explanation of some RRS results and, 
in particular, the case of an electric field perpendicular to the semiconductor layers, 
where the main results are shifts of the electronic transitions towards lower energies on 
increase in the electric field [14,17]. This holds for the ‘allowed’ transitions (when An = 
0, where n is the conduction and valence subband index). Another important effect, 
also due to the electric field, is the appearance of ‘forbidden’ transitions ( A n  # 0) 
[13,18], ascribed to the mixing of the valence subband states when their intensities were 
increased by the applied electric field. This was attributed to a field-induced change of 
the heavy- and light-hole mixing and also to the opposite electron-hole polarizations 
which increases the probabilities of forbidden transitions. 

In this work, we present a theoretical study of the ‘forbidden’ Raman peaks (when 
the electric field F # 0), which reflects the advantages of RRS in comparison with other 
conventional techniques. Firstly, the spatial localization of transitions, depending on 
the excitonic resonances, is better than that obtained by photoluminescence 16, 191. 
Secondly, as has been mentioned by Tejedor ef ai [6],  the fact that RRS is a single-step 
process with three simultaneous small denominators [20] produces a higher energy 
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sensitivity than other physical processes such as photoluminescence, which is a 'one- 
denominator' process. The work mentioned above [6], includingcomparative measure- 
ments of RRS and photoluminescence in GaAs-Gal - ,AI,As, provides a good example 
of the preceding comment, showing that the intensity of the resonance peaks has a 
dependence on F which is more complicated than the simple quenching observed in 
luminescence [9,21]. Our aim consists of the theoretical analysis of such a RRS structure, 
completing previous works [4, 191 where only 'allowed' transitions were included, 
neglecting the effects of the mixed hole wavefunctions and phonon structures which, in 
fact, are important in the study of the first-order Raman tensor. 

Thevalence subband mixing has been extensively studied [22-261 through the envel- 
ope function description using the Luttinger Hamiltonian, based on the effective-mass 
approach. With the electric field term included, we rewrite the 4 X 4 Hamiltonian in the 
modified form 
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and z is the electric field direction, perpendicular to the semiconductor layers. For the 
[0, 1, 01 direction in the k-space, the system is determined by 

eSl2 + p a 2/az2 + Fz)P, 3iz + CP, - + 6 a q  ln/az = 0 
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with four coupled differential equations, having 
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and E,,,, and E,,, the eigenvalues to be determined (the subscripts j , j '  stand for the pure 
n heavy- and m light-hole energy levels at kl = 0. If F =  0, the j and j'  states are 



F dependence of Iforbidden' resonant Raman scattering 7431 

degenerates) and yi the standard Luttinger parameters (see 1251). Setting the auxiliary 
functions 

@I4 = 9 3 / 2 f q - 3 / 2  @41 = 4)3 /2 -q-3 /2  

@23 = v-1/2 + T 1 2  $32 = (P-1/2 -PI12 (5)  

(al + pa2/azz  + F Z ) @ ~ ~  + c@= + 6 a@,,/aZ = o 
(E,. + p a2/az2 + FZ)@= + c @ ~ ~  - 6 a@,,/az = 0. 

we can rewrite the system (3) with two coupled differential equations, in which case 

(6)  

The next step consists of defining the new variables 

where r, and s, (the subscript i denotes inside the well) are not independent ones, but 
they are related by the constraint 

s, = (fi/p)'l3r, + (-pFZ)-1'3(a,  - el. + A&) = Kir+ K? (8) 
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where AEh = E,, - E,,,,. From (6) and (7)  we have that 

where the primes and dots indicate r, and s, derivatives, respectively, and 

We know, through the different methods used up to now (e.g. TBA, Gaussian wave 
combination and probe series) that the character of the hybridized valence band states 
in the k-space varies from pure heavy-hole (or light-hole) states (at k = 0) to dominant 
light-like (or heavy-like) hole states, the mixing being modulated by the external field. 
We also know that the field-dependent states at k = 0 ,  in the absence of hybridization, 
are described by Airy functions. Therefore, we try the following ansafz for @14 and @=: 

@I4 = c(r,S)?;(r) + - c(r,s)l%,(s) (W 
@23 = [I - C ( r , ~ ) ] @ ~ ( r )  + C(r,s)%,(s) (1 lb)  

where %,(r) = aAi(r) + bBi(r) and %,(s) = CA,@) + dBi(s) are the pure heavy and light 
states respectively, A,  and Bi are the standard Airy functions [27] and a,  b ,  c and dare  
four arbitrary constants. The coefficient C will act like a mixing function limited from 0 
to 1. Now, we substitute equations ( l l a )  and (116) into the coupled system (9). in which 
case we have 

C'[2(%;1 -%I ) - 20(Fi  -%;)I + C[(@Y - %;) - U(%; - %'! ) - Z A ( S ,  -%,)I 
= -93: +rgC -w%;  
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So, from the system (12) we get 

where 
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The following steps consist of removing v i  from @,..and applying the usual boundary 
conditions across the FQW interfaces to obtain the energy eigenvalues. The system can 
be numerically evaluated starting from the well known energy values in absence of 
valence band mixing [9]. Having obtained the energy levels we normalize the wave- 
functions for several k-values near the r point (we are interested in the energy levels in 
the proximityof the Brillouin zonecentreaswecansee in thestudy of Ramanscattering. 
The reason for such k-values is based on a negligible optical phonon momentum and on 
three different field intensities for a sample consisting of a 230 A GaAs layer and a 250 %, 
Gao,nAlo.,,As layer. The Luttinger parameters are the same as those in [9] and 1251. 
Because the Luttinger Hamiltonian does not allow state mixing at such a point, we are 
going to use kl, = lo-, .&-I ,  very close to the direct gap. Figure 1 shows the evolution of 
the mixing rate between different states obtained by computing (Vjlhh) and (Vjllh) as 
external field functions a t  kl, = lo-, A-', where lhh) and llh) are pure heavy- or light- 
hole states at k = 0. One can observe that the state mixing is nearly negligible at the 
chosen point. Figure 1 also shows the comparison with the mixing rate obtained by a 
TBAmOdel [28]. It should be noted that, at k # 0, each heavy-hole state is mixed withall 
the light-hole states and vice versa; this mixture is found to be sufficiently strong only 
for the second hh and first Ih-like states. The energies of these two states are closer than 
those of the other states, crossing at the field determined by AE, = 0. A more realistic 
solution to the problem could be obtained from the Hamiltonian proposed by Bauer 
andAndo[3]includingtheelectron-holeinteraction, but itdoesnot seemto beamenable 
to analytical treatment (the Coulomb interaction slightly diminishes the valence and 
conduction levels). 

Our interest centres on analysing the Raman tensor and, in order to calculate this, 
wefollow thesame theoretical treatmentasTejedorandHernandez-Cabrera[21], based 
on the formalism of Manuel ef a1 [30] and Martin [31]. In order to compare with 
experimentaldata, the back-scatteringconfigurationandsecond modeofthe~ophonon 
have been selected. The present method allows us to simulate any experimental con- 
figuration and every phonon mode and polarization by introducing the appropriate 
expressionsfrom[31]. Aswe havesaid, weshallneglect theelectron-holeinteractionand 
otherexcitoniceffects. Using thismethod we can introduce these effectssubsequently by 
changing the envelope functions. We shall take into account a single FQW, the results 
being qualitatively identical for a multiple FQW structure. We shall perform a similar 
analysis to that in [30] when the external field is present. In the absence of field, the 
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Figure 1. Square of the spatial wavefunction of.the three upper valence band states for 
three different external electric fields: (a )  this work (for k,l = 10.' A-() for F = 0 kV cm-' 
(-), 5 kVcm-'( - - -)and 10 kVcm-' ( -  ' -); ( b )  from [281 (forkll = 0) for V = 0 V; 
V =  O.CnSV(- - -)and V -  0.15V(- .-), 

forbidden part RF of the Raman tensor is obtained by considering the electron-phongn 
Frohlich interaction H*ph in a first-order approach, giving 

where wo is the frequency of the optical phonon, q is the phonon wavevector with 
components q, and qz parallel and perpendicular to the layers. me., and mh,i are the 
electron and hole effective masses of the jth exciton and 

M x.1 ' = I pk.j(z)z2vt,j(z) dz (16) 

k standing for e or h for electrons and holes, respectively. Also, 

where Ej and r, are the energy transition and the damping factor, respectively. The 
terms E - E, - iri and E - E, + w, - ir, determine the positions of the two resonant 
peaks. The position of the lower-energy peak, corresponding to an n = j electron-hole 
exciton level, is termed the 'incoming' resonance. The higher-energy peak, on the other 
hand, is shifted from the incoming resonance by w, and it is the so-called 'outgoing' 
resonance. Both peaks were confirmed by optical absorption measurements. The factor 
Axi determines the RF energy dependence by the two-dimensional (ZD) nature of the 
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electronic states. Thus, the Raman intensity can be calculated from p ( E ,  kl), the joint 
density of states, for a given superrattice configuration [29,30], even without detailed 
knowledge of the electron-phonon interaction. Allowing optical dipole transitions only 
between E.. and E,, levels, p ( E ,  k,) is a step function. Under these conditions, we can 
obtain equation (15) in a straightforward manner. 

For low fields, the problem can be solved by the first-order perturbation approach, 
where Heph and HF (Hamiltonian due to the electric field) are not mixed and HFdoes 
not contribute to the resonance of the phonon peaks of the Raman spectrum, In this 
approach, equations (16) and (17) remain valid and the effect of the electric field is 
reduced to the introduction of the Airy functions and phonon modes. For higher fields, 
second-order perturbation is required, so that a mixture of H,and H*ph is possible, and 
the electric field directly affects the resonance of the phonon peaks. The second-order 
result is described by the first-order resultscorrected [20,21] by 

plus a similar term having a shift hao in the denominator. 
The RRS cross section is directly related to the square of the Raman tensor and is 

proportional to the scattering volume V .  It isconvenient to refer thiscrosssection to the 
volume of either the unit cell or an atom. Thus, different values for the cross section of 
solidsmay be given by different workers. Thisproblem iscircumvented by using, instead 
of the cross section, the scattering efficiency S defined by dropping V .  This quantity, 
with the dimensions of an inverse length, represenis the ratio of the scattered to the 
incident power for a unit path length within the solid. The scattering efficiency S 
multiplied by the scattering length and corrected for reflection losses in entering and 
leaving the sample gives the total observable scattered intensity. The scattering length 
may be limited by absorption in the solid, particularly in materials with strong optical 
absorption and near resonances. In this case, it is customary to use the back-scattering 
geometry. The effective scattering efficiency $* is a dimensionless quantity obtained 
from S, corrected by the absorption coefficients and the reflectivities of the incident and 
scattered radiation and the plane parallel sample thickness [20, 321. In this work, we 
have compared the scattering efficiency (obtained by means of the Raman tensor) with 
experimental RRS intensities, in arbitrary units, 

Thereisasubstantial improvement with respect to the resultsin [20,32] when mixing 
effects are included; here we use the previously obtained mixed envelope functions and 
the different optical phonon modes. This means that we can obtain valuable matrix 
elementsfrom any conductionandvalence band with n # n', and resonance appearsnot 
only for the Enc-nh., exciton, but also for any E,,-n.h.,.  Another important effect is the 
krdependence of p ( E ,  kg) and of the effective masses. The latter can be neglected in the 
Brillouin zone centre vicinity. The potential function of the electron in the electrostatic 
field associated with the LO modes has been taken from [31]. I n  recent work, Huang er 
af [33] show that such a potential function can be constructed including every phonon 
structure. Calculations have been done for two different k,,-values: 0 and lo-) A-1. 
Figure 2 shows the RRS spectra of the GaAs Lo phonon. In order to compare directly 
with experimental measurements [6], we have chosen a logarithmic scale for the Raman 
intensities, an energy scale from 1.55 to 1.65 eV and the same w,ell width used in [6] in 
the 24 kV cn-' RRS example. One may observe the behaviour of the E,&c - 4hh), 
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Figure 2. RRS spectra (on a logarithmic scale) Figure 3. RRS spectra (on a logarithmic scale) for 
lor a GaAs (230 & G ~ . S I A I O  ,As (250 A) three diflerent applied electric fields: -, 
superlattice with a 24 RV cm-' applied electric 10 kVcm-'; - - - , 50kVcm-I: -.-, 
field: - , this work; e, experimental data 100 kV cm-'. The excitonic peaks are labelled as 
from 161. follows ((i) and (0) indicate the 'in' and 'out' res- 

onances for each exciton): 1. E,,(i): 2,  E,,(o); 3, 
E d ) ;  4. E&: 5.  E d ) :  6. E d ) ;  7, E2,(o); 8 
Edi) ;9 .  E d i ) ;  10, E d o ) ;  11, EM@). 

E2,(2c - lhh) and E , ( k  - 4hh) peaks when the field increases. All of them are 'for- 
bidden' peaks. We must draw attention to the excellent agreement of our calculations 
with experiments in a 24 kV cm-' field. 

Since photoluminescence allows the use of a wider energy range than RRS, we have 
represented in figure 3 the whole RRS curve from 1.40 to 1.65 eV (we cannot predict the 
actual RRS intensity without experimental measurements, but we can make provisions 
for the interpretation of possible mechanisms such as electron-phonon interaction 
through the power of the envelope functions). In order to show the influence of the 
'forbidden' peaks over previous results, we have selected the same field intensities as in 

To sum up, we have here obtained analytical envelope functions representing super- 
lattice valence band states under the action of an electric field. Through these functions 
we have calculated the diagonal elements (Frohlich) structure of the Raman tensor in 
superlattices, proving the worth of such hybridized functions with respect to preceding 
work and comparing our results with experimental Raman measurements. Our scheme 
isusefulinthestudyoftheexperimentsrelatedtothe bandmixingand can be generalized 
to any layered semiconductor, experimental configurations and phonon polarizations. 
In this way, the non-diagonal terms of the Raman tensor (deformation-potential inter- 
action) can be investigated. 

[91. 
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